Classical Invariant Theory and the Equivalence Problem for Particle Lagrangians. I. Binary Forms
نویسنده
چکیده
The problem of equivalence of binary forms under linear changes of variables is shown to be a special case of the problem of equivalence of particle Lagrangians under the pseudogroup of transformations of both the independent and dependent vartables. The latter problem has a complete solution based on the equivalence method of Cartan. There are two particular rational covariants of any binary form which arc related by a “universal function.” The main result is that two binary forms are equivalent if and only if their universal functions arc identical. Construction of the universal function from the syzygies of the covariants. and explicit reconstruction of the form from its universal function are also discussed. New results on the symmetries of forms, and necessary and sufficient conditions for the equwalcnce of a form to a monomial, or to a sum of two rtth powers are consequences of this result. Fmally, we employ some syzygies due to Stroh to relate our result to a theorem of Clebsch on the equivalence of binary forms. ( IWO k.Kkrn,~
منابع مشابه
Invariant Theory , Equivalence Problems , and the Calculus of Variations
This paper surveys some recent connections between classical invariant theory and the calculus of variations, stemming from the mathematical theory of elasticity. Particular problems to be treated include the equivalence problem for binary forms, covari-ants of biforms, canonical forms for quadratic variational problems, and the equivalence problem for particle Lagrangians. It is shown how thes...
متن کاملClassical Invariant Theory and the Equivalence Problem for Particle Lagrangians
The problem of equivalence of binary forms under the general linear group is shown to be a special case of the problem of equivalence of particle Lagrangians under the pseudogroup of transformations of both the independent and dependent variables. The latter problem has a complete solution based on the equivalence method of Cartan. This leads to the determination of a universal function which r...
متن کاملA Novel Hybrid Modified Binary Particle Swarm Optimization Algorithm for the Uncertain p-Median Location Problem
Here, we investigate the classical p-median location problem on a network in which the vertex weights and the distances between vertices are uncertain. We propose a programming model for the uncertain p-median location problem with tail value at risk objective. Then, we show that it is NP-hard. Therefore, a novel hybrid modified binary particle swarm optimization algorithm is presented to obtai...
متن کاملTopological structure on generalized approximation space related to n-arry relation
Classical structure of rough set theory was first formulated by Z. Pawlak in [6]. The foundation of its object classification is an equivalence binary relation and equivalence classes. The upper and lower approximation operations are two core notions in rough set theory. They can also be seenas a closure operator and an interior operator of the topology induced by an equivalence relation on a u...
متن کاملSignature submanifolds for some equivalence problems
This article concerned on the study of signature submanifolds for curves under Lie group actions SE(2), SA(2) and for surfaces under SE(3). Signature submanifold is a regular submanifold which its coordinate components are differential invariants of an associated manifold under Lie group action, and therefore signature submanifold is a key for solving equivalence problems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003